Asymptotics of bivariate analytic functions with algebraic singularities
نویسنده
چکیده
In this paper, we use the multivariate analytic techniques of Pemantle and Wilson to find asymptotic formulae for the coefficients of a broad class of multivariate generating functions with algebraic singularities. Flajolet and Odlyzko (1990) analyzed the coefficients of a class of univariate generating functions with algebraic singularities. These results have been extended to classes of multivariate generating functions by Gao and Richmond (1992) and Hwang (1996, 1998), in both cases by immediately reducing the multivariate case to the univariate case. Pemantle and Wilson (2013) outlined new multivariate analytic techniques and used them to analyze the coefficients of rational generating functions. Résumé. Dans ce papier, on utilise des techniques analytiques multivariées dévéloppées par Pemantle et Wilson pour trouver des développements asymptotiques des coefficients d’une large classe de séries génératrices multivariées avec singularités algébriques. Flajolet et Odlyzko (1990) ont analysé les coefficients d’une classe de séries génératrices univariées avec singularités algébriques. Ces résultats ont été généralisés aux classes de séries génératrices multivariées par Gao et Richmond (1992) et Hwang (1996, 1998). Dans les deux cas, on peut immédiatement réduire le cas multivarié au cas univarié. Pemantle et Wilson (2013) ont décrit de nouvelles techniques analytiques multivariées et ils les ont utilisées pour analyser les coefficients des séries génératrices rationelles.
منابع مشابه
Asymptotics of the Coefficients of Bivariate Analytic Functions with Algebraic Singularities (preprint)
Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of univariate generating functions with algebraic singularities. These results have been extended to classes of multivariate generating functions by Gao and Richmond (1992) and Hwang (1996, 1998), in both cases by reducing the multivariate case to the univariate case. Pemantle and Wilson (2013) outlined new mult...
متن کاملAsymptotics of Bivariate Generating Functions with Algebraic Singularities
ASYMPTOTICS OF BIVARIATE GENERATING FUNCTIONS WITH ALGEBRAIC SINGULARITIES Torin Greenwood Robin Pemantle Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of univariate generating functions with algebraic singularities. Gao and Richmond (1992) and Hwang (1996, 1998) extended these results to classes of multivariate generating functions, in both cases by reduci...
متن کاملSOLVING NONLINEAR TWO-DIMENSIONAL VOLTERRA INTEGRAL EQUATIONS OF THE FIRST-KIND USING BIVARIATE SHIFTED LEGENDRE FUNCTIONS
In this paper, a method for finding an approximate solution of a class of two-dimensional nonlinear Volterra integral equations of the first-kind is proposed. This problem is transformedto a nonlinear two-dimensional Volterra integral equation of the second-kind. The properties ofthe bivariate shifted Legendre functions are presented. The operational matrices of integrationtogether with the produ...
متن کاملAutomatic asymptotics for coefficients of smooth, bivariate rational functions
We consider a bivariate rational generating function F (x, y) = P (x, y) Q(x, y) = ∑ r,s≥0 arsx y under the assumption that the complex algebraic curve V on which Q vanishes is smooth. Formulae for the asymptotics of the coefficients {ars} are derived in [PW02]. These formulae are in terms of algebraic and topological invariants of V, but up to now these invariants could be computed only under ...
متن کاملAnalytic continuation of eigenvalues of a quartic oscillator
We consider the Schrödinger operator on the real line with even quartic potential x+αx and study analytic continuation of eigenvalues, as functions of parameter α. We prove several properties of this analytic continuation conjectured by Bender, Wu, Loeffel and Martin. 1. All eigenvalues are given by branches of two multi-valued analytic functions, one for even eigenfunctions and one for odd one...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 153 شماره
صفحات -
تاریخ انتشار 2018